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ABSTRACT

The large proper motions and diurnal parallaxes of earth—bound

artificial satellites coupled with the use of devices more sophisticated

than the photographic plate to record their motion force one to

consider methods of analysis beyond the traditional ones. In particular,

it is theoretically possible to deduce from the streak made by the

I
passage of a celestial object a complete specification of its location

and velocity. Thus, for artificial satellites, one has the possibility

of orbital element set construction from a complete set of initial

conditions without recourse to any approximations. In this report, I

show how and why this is possible . The practical situation is less

hopeful however , in that the distance and radial velocity can be

determined only if the streak has measureable curvature. Extremely

accurate (± O?O5/sec) angular velocities should be obtainable. The

positional accuracy is a function of the driving of the telescope.
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I. MOTIVATION

If one uses a solid state device camera (CID or CCD) or an electron

beam tube with digitized output to observe artificial satellites, then a

whole new field of optical observing and data reduction is thrown open.

With such a device connected to a telescope moving at the sidereal rates

the t ime history of the motion of a satellite can be obtained. That is, we

can know the coordinates of the light deposited on the camera target and

when that light was deposited. This is possible with a photographic plate,

but difficult to do rapidly and accurately. Within this knowledge is

a set of complete information concerning the satellite’s geocentric location

and velocity. Hence, an analysis of the image ’s location as a function of

t ime can yield a full set of initial conditions for orbital analysis.

Moreover , there should be an extremely high internal accuracy in these points
I-

as they all suffer from nearly the same systematic errors. The random and

systematic errors associated with the telescope pointing enter weakly or

not at all. Hence , we have the promise of more informat ion than just the

object ’s position and of extremely high accuracy in this additional data.

The analysis of the imaged motion is straightforward. It is given

in Sections II , III , and IV. In Section V , a practical discussion of the

• situation reveals that the distance and radial velocity can only be

determined if the motion on the camera target deviates from a straight

line. The angular velocity will be very precisely ascertained and this

information should be used in initial orbit construction as well as in

th. different ial correction of orbits”2.
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II • THE GEOCENTRIC GEOMETRY

We use the standard , almost inertial , spherical , geocentric coordinate

system based on the earth ’s equator and the Vernal Equinox . A celestial

object ’s location is given by r — rL , £ — (coscScoau,costSsina ,sin6).

The geocentric distance is r , the geocentric declination is 6, and the

geocentric right ascension is a. Over very short t imes, very much less

than an orbital period (<0.3% in practice), we regard the motion as

uniform and rectilinear in this coordinate system. Since this is

different from uniform “rectilinear” (e.g., along a great circle) motion

on the celestial sphere, there is a coupling between the quotient of

radial velocity (*) and the distance (r) and the object ’s position

(e.g., 2.). To see how this comes about consider the orthonormal basis

given by 2., a, and d; a (—sinct,cosa,O), d — (—sin6cosa ,—sinósincz,cosä).

We can write

t — 2.?, to — &cosôa + Sd. (1)

In terms of the constant unit vector n — (0,0,1), which points towards

the North Celestial Pole,

t L.t, (2a)

&cos6 — a.w — n. (L x t)/(rcosô), (2b)

6 — 4.w — (n .tseci5 — ttanô)/r. 
(2c)2
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• By differentiating Eqs. (2) and enforcing the constraint V — 0, we find,

.. 2r = r w  (3a)

• = 2&(ôtan6 — f/ r ), (3b)

• 5• — &2sinc5cos5 — 26(t/r) . (3c)

Thus, even though the space motion is along a geodesic , the position of the

object as a function of time changes because of its purely radial motion.

This term is known as the foreshortening term in astrometry. It can be

measured for some natural celestial objects. To convince the reader that

f/r is not numerically much smaller than ~ or 6 for artif icial satellites

consider a satellite with argument of perigee — 2700, inclination 60°,

eccentricity i/li. These numbers are typical of the Molniya class

satellite of which, with their associated rocket bodies, there are hundreds.

For such a satellite observed at the equator ct — nv~i, 6 — ni%, f/r — 2n

where n is the mean motion (for which I’ll use 2 rev/day when it’s needed).

Clearly, the three quantities are comparable and, since 6 — 0, the f ore—
I

shortening terms drive the acceleration of the position.

To derive the rigorous results we use the equations of motion

r (t) — r ( t )  + i( t)  (t — t ) ,  (4a)

t (t)  — t ( t ) .  (4b)

3 
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By manipulating the component forms of Eqs. (4), we can obtain

(d — r (t)/r ( t
0

) ,  p~ = 6(t0
) ,  u6 6( t ) ,  v = t(t )/r(t), T = t — to, 6

6( t ) ,  ~ — ct ( t ) ,  etc.).

d2 1 + 2vT + (v2 + to2)T2, (5a) L
• tan(ct — c t ) = ji.~T/Ll + (v — ii6

tan6 )TJ, (Sb)

+ (1 - d + vT)tand
tanf(ô — 6 )/2]  = ° 

2 2 2 1/2’ (Sc)
° d + Ui + (v — p

6tan6 )T] + ~~T 
}

f/r = d/d = Iv + (v2 + w2)T ]/ d 2, (6a)

6 — ~~/{[l + (v — ij
6
tand )T12 + ~~T

2
}, (6b)

• + vT) — to2Ttanô
6 = 

2 2 2 2 1/V 
(6c)

d {Ii + (v — ii6
tan6 )T] + PaT }

These equations were f irst correctly derived by Eichhorn and Rust3.

Equations (5 and 6) give a complete description of the motion in

the form we’ll need it. The position at any time depends on the five

Initial conditions 
~~ 

5 , v , 
~a’ and p6. To recover the sixth quantity

we need to refer the motion to the observer ’s location instead of the

center of the earth. Before we do this, we could put the physics back

into the problem . My main purpose In considering uniform rectilinear

motion was to br ing to the reader ’s attention the geometrical effect

4 
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~~ that the foreshortening terms do influence the position. Equations (5 and 6)

could now be replaced by the formulas of two—body Kepierian motion. The

development of the next two sections is independent of the physics, or lack

thereof , in Eqs. (5 and 6). It should also be clear that, since f i r  enters

first into ~ and 6, that it can only be determined if the imaged path has

measureable curvature. We’ll calculate the radius of curvature in §V and

find it to be essentially infinite. Hence, as a practical matter, the

- physics doesn’t matter.

I
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III. DIURNAL PARALLAX

I shall , except for time variables, uniformly use the corresponding 
—

upper case letter to denote a topocentric quanti ty.  Thus , A = A(t) =

the topocentric right ascension at time t , M6 
= A = A ( t ) = the proper

motion in the topocentric declination at time t , D = R/R etc. Let

— p (cos~ ’cosT,cos~ ’sinT,sin~ ’) be the observer ’s geocentric location.

Here p is the observer’s geocentric distance, ~~
‘ his geocentric latitude,

and I is the local mean sidereal time. The translation to the observer

is accomplished by

r = R + p .  (7)

If we write the right—hand side of this in component for, and use Eqs.

(4) similarly expressed , one can derive the results analogous to those

in Eqs. (5 and 6). To persuade the reader that we don ’t want to follow

this course one finds, for the location,

D2 + 2DScosZ = 1 + 2VT + (V 2 
+ ~

2 )T 2 + 2ScosZ

+ 2ST(VcosZ + dcosZ /dt) + (StTco$’) 2

- 2StT 2
cos4 ’cosA sinH (V — M

6tanA 
— M

a
COtHo)~ 

(8a)

M T + S
1tan(A — A )  a 

, (8b)
1 + (V — M

6
tanA )T + S2

4
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tan[(A — A )/2] = [M
6
T + (1 — D + VT)tanA ]/(D + C). (8c)

The missing initial condition is S = p/R . The other quantities are

defined by (Z = topocentric zenith distance, H topocentric hour angle)

cosZ = sin4)’sinA + cos$’cosAcosH, (9a)

1 1 = 1 — A, (9b)

C
2
= I l + ( V - M t a nA )T]

2 + M 2
T2 +2{S M T6 o a l a

+ S2 [1 ÷ (V — M
6

tanA )T}} + (Scos4 ’secA ) 2Ui~T) 2

+ 2[1 — cos(r — T )  — tTsin(t — I) ] ) ,  (9c)

S1 
= Scos4 ’secA [sinil + tTcosll — sin(T — A f l ,  (9d)

= Scos4’secA [cosll — tTsinH — cos(T — A) J . (9e)

S
Necessarily as S + 0 D -‘~ d etc. and Eqs. (8) reduce to Eqs. (5) . The analog

of Eqs. (6) can be obtained from Eqs. (8) by differentiation with respect

to the time. Equations (8 and 9) are rigorous.

It seems simpler to me to interpret Eqs. (7) geometrically . Then one

f ind s4
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— A) = tan(H — h) = 

(scos~ ’sec6/d)sinh 
, (l0a)

11 — (scos4 ’secó/d)cosh]

tan(6 — A) = 
(ssin4’cscy/d)s in (y — 6) 

(lOb)11 — (ssin~ ’cscy/d)cos (y — 6) ] ’

D = dsin(6 — y)csc(A — y), (lOc)

where

tany = tanc~’cosJ (a — A)/2]seclh + (a — A)/2]. (lOd)

Equations (5, 10) completely specify the topocentric location of the object

in terms of the initial conditions s = p/r , a , 6 , v = t /r , p = 6 ,o o o 0 0  a o
and p

6 
= 6

~
. When the telescope/camera combInatIon images the motion, with

the telescope in sidereal drive, on a photographic plate or camera target,

the resulting streak contains, albeit implicitly, a complete description

of the motion. The last step then is to project a portion of the

celestial sphere onto a plane .

a

-L 
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IV. STANDARD COORDINATES

If the camera is equivalent to a pinhole camera, then the projection

of the imaged portion of the celestial sphere onto a plane will be a

gnomonic projection. The resulting coordinate system on the plane is a

rectangular one known as the standard coordinate system. To relate

standard coordinates , symbolized by ~~ , r~, to right ascension and declina—

• tion we choose the unit of length for the standard coordinates to be the

telescope ’s focal length and we need to know the coordinates where a

plane , parallel to the p lane of the plate , touches the celestial sphere .

This is known as the tangential point . One end of the optical axis of

the telescope pierces the celestial sphere at this point , the other end

intersects the center of the plate. The positive ~ axis points toward

the North Celestial Pole . The positive ~ axis points toward the east

point4

If (ct*, 6*) are the coordinates of the tangential point then the

relationship between E , n and a corresponding a, 6 is given by

= sec6*sin(a — ct*)/Itan6*tan6 ÷ cos(a — a*)], (ila)

= I tan6 — tanô*cos(ct — cl*)J/L tan6*tan6 + cos(ct — ct*)]. (llb)

The inverse of Eqs. (11) is

cotâsin(c* — c**) — ~/(sin6* + ~ coS6*) , (l2a)

9
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cot ócos(ct — ci*) — (cosó* — ~sin6*)/(sin6* + ~cos6*) . (12b)

The formula,

sinö - (sin6* + flcos6*)/(l + + n2)1’2. (12c)

is useful near the equator.

The problem is now completely solved. Since we obviously observe

topocent rically, we replace a, 6 in Eqs. (11) by A , ~ computed from

Eqs . (10). The geocentric coordinates appearing in Eqs. (10) are given

as a function of time by Eqs . (5) . Since we measure the properties of

the streak Imaged on the plate, we have an Implicit problem for the

determination of the location and velocity of the moving object . Once

these have been solved for we can compute the orbital elements. It ’s

also clear from Eqs. (11, 12) that it is simplest if the position of

the telescope is not changed during the exposure of the plate.
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V. APPROXIMATE FORMULA

By combining all of the formulas of the preceding three sections, we

find that, through all terms of the second order

— {E
a + MaT + [2Ma(M

ô
tanA

o 
— V) + St

2
cos$’ secA sinH ]T2/2}cos~

• — M
6

T(E
a 

+ M6
T)sinA , (l3a)

= E6 + M6T — [M2sin.A cosA + 2VM
6 

+ St2
cos4 ’sinA cosH ]T2/2

+ I(E + MT)2/2]sinA cosA , (l3b)

where

E
~ 

= A0 
— a*, E6 

— A0 
— 5*• (13c)

The reader is reminded again that these expressions are not series in S

but rather series in E
a~ 

E6, MaTe M3
T, and VT. It ’s clear that all of

these quantities are limited by the field—of—view of the telescope/camera

combination. It should also be clear that neither a — ct* nor 6 — 6*
0 0

is limited by the field of view and that they aren’t necessarily small.

(Compare with references 5, 6, and 7.)

The first thing we shall compute is the curvature of the streak. If

the radius of curvature is effectively infinite, then the quadratic terms

11 
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in the time can be dropped from Eqs. (13) and, as a practical matter , the

distance and radial velocity are unobtainable. The leading term in the

curvature is

K — (St2 cos+’/123) IM6sinR
0 + M s in~~cos~~cosHI . (l4a)

As S + 0 the curvature becomes

K + 2I(VE0
/~)sinA0~. (l4b)

For the satellite considered earlier , if its equator crossing occurs

on the meridian, K “. 1/400. For any reasonable focal length the streak

will, therefore, be indistinguishable from a straight line.
— The high internal accuracy of the measured values of 

~~~, ri imply

that E
a

COSA
O~ 

B6, MaC0SAo~ 
and M6 will be very well determined. The

external systematic errors in the angular velocity will also be negligible.

However , the external systematic and random errors in the position will

reflect those of the telescope pointing . In fact, in the simplest situa-

tion, the standard deviation of E cosA and E will be ,4~ down from thosea o 6
of ~ and ii (N — number of observations) while the standard deviations of

Mcxc08
~o and M6 will ~~ (total exposure duration) down from these. This may

well be a few hundredth’s of a second of atc/second. The length of the

streak , when K 0, is just (~ times the duration of the exposure . This

may be useful as a constraint but because of its relatively large

12
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_ p
standard deviation is not us.ful for the overall analysis. Finally,

had only the developed streak been analyzed , we can see from Eqs. (13),

that the model would have been

— (E
~1

M
6 

— E6M0cos~0)/M6 + (Macos~~/M6)n• (15)

Hence, unless the streak passes through the origin and the length of the

streak is employed , all of the information would have been lost. 
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